@dataknut
)This work is made available under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.
This means you are free to:
Under the following terms:
Notices:
For the avoidance of doubt and explanation of terms please refer to the full license notice and legal code.
If you wish to use any of the material from this report please cite as:
This work is (c) 2019 the University of Otago
This report uses the safe version of the grid spy 1 minute data which has been processed using the code in https://github.com/CfSOtago/GREENGridData/tree/master/dataProcessing/gridSpy.
This work was supported by:
The NZ GREEN Grid household electricity demand study recruited a sample of c 25 households in each of two regions of New Zealand (Stephenson et al. 2017). The first sample was recruited in early 2014 and the second in early 2015. Research data includes:
NB: Version 1 of the data package does not include the time-use diaries.
This report provides summary analysis of the imputed total demand for each household. The imputation was done using:
linkID | dateTime_utc | imputedTotalW |
---|---|---|
rf_06 | 2015-03-31 11:00:00 | 439.38 |
rf_06 | 2015-03-31 11:01:00 | 436.53 |
rf_06 | 2015-03-31 11:02:00 | 417.97 |
rf_06 | 2015-03-31 11:03:00 | 317.46 |
rf_06 | 2015-03-31 11:04:00 | 316.98 |
rf_06 | 2015-03-31 11:05:00 | 316.98 |
Table 3.1 shows the first few rows of the Grid Spy 1 minute power data. Table 3.2 shows a summary of the Grid Spy 1 minute power data (for more detail see Section 7.1).
linkID | dateTime_utc | imputedTotalW | dateTime_nz | obsTimeHMS | |
---|---|---|---|---|---|
Length:15163214 | Min. :2015-03-31 11:00:00 | Min. :-1084.7 | Min. :2015-04-01 00:00:00 | Length:15163214 | |
Class :character | 1st Qu.:2015-06-23 20:38:00 | 1st Qu.: 211.2 | 1st Qu.:2015-06-24 08:38:00 | Class1:hms | |
Mode :character | Median :2015-09-17 15:41:30 | Median : 425.9 | Median :2015-09-18 03:41:30 | Class2:difftime | |
NA | Mean :2015-09-22 04:22:52 | Mean : 942.3 | Mean :2015-09-22 16:22:52 | Mode :numeric | |
NA | 3rd Qu.:2015-12-19 12:37:00 | 3rd Qu.: 1172.6 | 3rd Qu.:2015-12-20 01:37:00 | NA | |
NA | Max. :2016-03-31 10:59:00 | Max. :13999.8 | Max. :2016-03-31 23:59:00 | NA |
Note that:
Table 3.3 shows the summaries for each household as imputed using circuitsToSum_v1.0. Note that the presence of a PV inverter may only be known from the appliance summary and/or the household data.
The number of households excluded will depend on the circuits file used:
## Warning: `as_tibble.matrix()` requires a matrix with column names or a `.name_repair` argument. Using compatibility `.name_repair`.
## This warning is displayed once per session.
linkID | hasHhData | hasApplianceSummary | pvInverter | energyStorage | notes | nObs | minW | maxW | Circuit 1 | Circuit 2 | Circuit 3 |
---|---|---|---|---|---|---|---|---|---|---|---|
rf_06 | Yes | No | Not known | Not known | 523193 | 103.00 | 9975.92 | Hot Water - Controlled$2248 | Incomer - Uncontrolled$2249 | ||
rf_07 | Yes | No | Not known | Not known | 508692 | 16.00 | 9508.46 | Incomer 1 - Uncontrolled$2726 | Incomer 2 - Uncontrolled$2725 | ||
rf_08 | Yes | No | Not known | Not known | 521723 | 133.89 | 11556.80 | Incomer - Uncontrolled$2093 | Hot Water - Controlled$2094 | ||
rf_09 | Yes | No | Not known | Not known | 153389 | -16.00 | 8586.00 | Incomer 1 - Uncont - Inc Hob$2729 | Incomer 2 - Uncont - Inc Oven$2730 | ||
rf_10 | Yes | Yes | No | No | 526678 | 27.68 | 9160.32 | Incomer - All$2599 | |||
rf_11 | Yes | Yes | No | No | 519067 | 15.00 | 10955.77 | Incomer - Uncontrolled$2585 | Hot Water Cpbd Heater- Cont$2586 | Spa - Uncontrolled$2587 | |
rf_12 | Yes | No | Not known | Not known | 80801 | -406.00 | 8779.69 | Incomer 1 - Hot Water - Cont$2626 | Incomer 2 - Uncontrolled$2625 | Incomer 3 - Uncontrolled$2627 | |
rf_13 | Yes | Yes | No | No | 526809 | 163.04 | 11580.60 | Incomer - Uncontrolled$2209 | |||
rf_14 | Yes | Yes | No | No | NA | NA | NA | NA | NA | NA | |
rf_15a | Yes | No | Not known | Not known | Disconnected 15/01/2015. Re-used | NA | NA | NA | NA | NA | NA |
rf_15b | Yes | No | Not known | Not known | Re-user. Then disconnected 02/04/2016 | NA | NA | NA | NA | NA | NA |
rf_16 | Yes | No | Not known | Not known | NA | NA | NA | Incomer 1 - Uncont inc Oven$2681 | Incomer 2 - Uncont inc Stove$2680 | Hot Water - Controlled$2679 | |
rf_17a | Yes | No | Not known | Not known | Unusual & specialist energy tech configuration. Disconnected 28/03/2016. Re-used. | 520688 | -1084.72 | 9041.53 | Incomer 1 - Uncont - inc Hob$2152 | Incomer 2 - Uncont - inc Oven$2151 | Hot Water - Controlled$2150 |
rf_17b | Yes | No | Not known | Not known | Re-user | NA | NA | NA | NA | NA | NA |
rf_18 | Yes | No | Not known | Not known | NA | NA | NA | NA | NA | NA | |
rf_19 | Yes | Yes | yes | No | NA | NA | NA | NA | NA | NA | |
rf_20 | Yes | No | Not known | Not known | NA | NA | NA | NA | NA | NA | |
rf_21 | Yes | Yes | No | No | 504923 | 31.00 | 6835.12 | Incomer - All$2748 | |||
rf_22 | Yes | Yes | No | No | 525979 | 50.25 | 11535.40 | Incomer - Uncontrolled$2237 | Hot Water - Controlled$2236 | ||
rf_23 | Yes | Yes | yes | yes | NA | NA | NA | NA | NA | NA | |
rf_24 | Yes | Yes | yes | No | NA | NA | NA | NA | NA | NA | |
rf_25 | Yes | Yes | No | No | 443096 | 0.00 | 10163.25 | Incomer 1 - Uncontrolled $2763 | Incomer 2 - Uncontrolled $2762 | ||
rf_26 | Yes | Yes | No | No | 522486 | -421.25 | 8814.36 | Incomer 1 - All$2703 | Incomer 2 - All$2704 | ||
rf_27 | Yes | Yes | No | No | 497686 | 58.00 | 9569.40 | Incomer - Uncontrolled$2824 | Hot Water - Controlled$2825 | ||
rf_28 | Yes | Yes | yes | No | NA | NA | NA | NA | NA | NA | |
rf_29 | Yes | Yes | No | No | 526661 | 115.89 | 11053.34 | Incomer - Uncontrolled$4181 | Hot Water - Controlled$4184 | ||
rf_30 | Yes | Yes | No | No | 477371 | 30.00 | 8706.07 | Incomer - All$4239 | |||
rf_31 | Yes | Yes | No | No | 526761 | 24.00 | 9429.64 | Incomer - All$4199 | |||
rf_32 | Yes | Yes | No | No | 526665 | 0.00 | 8274.91 | Incomer - All$4193 | |||
rf_33 | Yes | Yes | No | No | 526743 | 69.20 | 9654.25 | Incomer - Uncontrolled$4143 | Hot Water - Controlled$4144 | ||
rf_34 | Yes | Yes | No | No | 526557 | 74.00 | 13043.50 | Incomer - All$4225 | |||
rf_35 | Yes | Yes | No | No | 328634 | -622.00 | 10373.54 | Incomer - Uncontrolled$4126 | Hot Water - Uncontrolled$4125 | ||
rf_36 | Yes | Yes | No | No | 516127 | 0.00 | 11493.20 | Incomer - All$4148 | |||
rf_37 | Yes | Yes | No | No | 526651 | 51.00 | 9365.54 | Incomer -Uncontrolled$4136 | Hot Water - Controlled$4135 | ||
rf_38 | Yes | Yes | No | No | very large number of circuits | 374442 | -179.00 | 9073.99 | Incomer - Uncontrolled$4177 | Hot Water - Controlled$4178 | |
rf_39 | Yes | Yes | No | No | 495686 | -199.00 | 13999.81 | Incomer - Uncontrolled$4248 | Hot Water (2 elements)$4247 | ||
rf_40 | Yes | Yes | No | No | 338949 | 24.00 | 12527.77 | Incomer - Uncontrolled$4168 | Hot Water - Controlled$4167 | ||
rf_41 | Yes | Yes | No | No | 224546 | 56.00 | 10004.40 | Incomer - All$4192 | |||
rf_42 | Yes | Yes | No | No | 518065 | 35.08 | 11786.40 | Incomer - All$4132 | |||
rf_43 | Yes | No | Not known | Not known | 289563 | 0.00 | 6687.53 | Incomer - All$4213 | |||
rf_44 | Yes | Yes | No | No | 526738 | 32.00 | 12165.12 | Incomer - Uncontrolled$4156 | Hot Water - Controlled$4155 | ||
rf_45 | Yes | Yes | No | No | 525994 | 23.90 | 10385.13 | Incomer - Uncontrolled$4157 | Hot Water - Controlled$4158 | ||
rf_46 | Yes | Yes | No | No | 486863 | 92.00 | 10305.78 | Incomer - Uncontrolled$4230 | Hot Water - Controlled$4231 | ||
rf_47 | Yes | Yes | No | No | 524988 | 21.00 | 11171.30 | Incomer - All$4170 |
Figure 4.1 shows the incidence of -ve overall imputed power values by linkID (household) and date. As we can see they tend to be concentrated in a few households.
## Warning: Removed 33 rows containing missing values (geom_tile).
pvInverter | nObs | nHouseholds |
---|---|---|
No | 12284 | 27 |
Not known | 15763 | 13 |
yes | 0 | 4 |
Table 4.1 (-ve and 0 observations by PV inverter presence) shows whether or not this is likely to be a PV related problem in the dataset defined by . This is confirmed by Table @(tab:testPV) which shows the summary data from Table 4.1 but for just those we know to have PV inverters. If this version of the circuits file has excluded them then the power data will be all NA.
linkID | pvInverter | energyStorage | notes | nObs | minW | maxW | Circuit 1 | Circuit 2 | Circuit 3 |
---|---|---|---|---|---|---|---|---|---|
rf_19 | yes | No | NA | NA | NA | NA | NA | NA | |
rf_23 | yes | yes | NA | NA | NA | NA | NA | NA | |
rf_24 | yes | No | NA | NA | NA | NA | NA | NA | |
rf_28 | yes | No | NA | NA | NA | NA | NA | NA |
Figure 4.2 shows the mean overall imputed power values by linkID (household) and date where power <= 0. As we can see they tend to be concentrated in a few households with some reporting persistent -ve values even though they do not appear to have PV.
## Warning: Removed 33 rows containing missing values (geom_tile).
Next we test the power profiles by season to see if there is a seasonal pattern to the negatuive values which might indicate unreported PV (for example).
First we create a Southern Hemisphere season variable. We have a function to do this in the GREENGridData
package. We print a check table to ensure we are all happy with the coding of season
.
powerDT <- powerDT[, r_dateTime := dateTime_utc] # for consistency
powerDT <- GREENGridData::addNZSeason(powerDT)
table(lubridate::month(powerDT$r_dateTime, label = TRUE), powerDT$season, useNA = "always")
##
## Spring Summer Autumn Winter <NA>
## Jan 0 1141576 0 0 0
## Feb 0 1075452 0 0 0
## Mar 0 0 1135877 0 0
## Apr 0 0 1342246 0 0
## May 0 0 1372070 0 0
## Jun 0 0 0 1380257 0
## Jul 0 0 0 1393148 0
## Aug 0 0 0 1335760 0
## Sep 1310703 0 0 0 0
## Oct 1329129 0 0 0 0
## Nov 1186189 0 0 0 0
## Dec 0 1160807 0 0 0
## <NA> 0 0 0 0 0
Figure 5.1 plots overall mean power per minute by season and household id.
If a household has PV this should be clearly visible as a -ve curve centered on ~ 12:00 - 13:00.
Figure 5.2 repeats this analysis but for minimum power per minute by season and household id and plots only those values that are <= 0 to clarify time of day effects on -ve values.
When using the ‘total demand’ derived data we suggest data users:
In all cases we recommend that users check the data carefully before anlaysis and document anY filtering they apply!
## Skim summary statistics
## n obs: 15163214
## n variables: 8
##
## ── Variable type:character ─────────────────────────────────────────────────────────────
## variable missing complete n min max empty n_unique
## linkID 0 15163214 15163214 5 6 0 33
##
## ── Variable type:difftime ──────────────────────────────────────────────────────────────
## variable missing complete n min max median
## obsTimeHMS 0 15163214 15163214 0 secs 86340 secs 43140 secs
## obsTimeHMSQHour 0 15163214 15163214 0 secs 85500 secs 42300 secs
## n_unique
## 1440
## 96
##
## ── Variable type:factor ────────────────────────────────────────────────────────────────
## variable missing complete n n_unique
## season 0 15163214 15163214 4
## top_counts ordered
## Win: 4109165, Aut: 3850193, Spr: 3826021, Sum: 3377835 FALSE
##
## ── Variable type:numeric ───────────────────────────────────────────────────────────────
## variable missing complete n mean sd p0 p25
## imputedTotalW 0 15163214 15163214 942.3 1182.83 -1084.72 211.25
## p50 p75 p100 hist
## 425.93 1172.62 13999.81 ▇▂▁▁▁▁▁▁
##
## ── Variable type:POSIXct ───────────────────────────────────────────────────────────────
## variable missing complete n min max median
## dateTime_nz 0 15163214 15163214 2015-04-01 2016-03-31 2015-09-18
## dateTime_utc 0 15163214 15163214 2015-03-31 2016-03-31 2015-09-17
## r_dateTime 0 15163214 15163214 2015-03-31 2016-03-31 2015-09-17
## n_unique
## 526980
## 526980
## 526980
## Skim summary statistics
## n obs: 44
## n variables: 110
##
## ── Variable type:character ─────────────────────────────────────────────────────────────
## variable missing complete n min max empty n_unique
## Clothes Dryer 23 21 44 3 3 0 1
## Dishwasher 15 29 44 3 3 0 1
## Electric heater 30 14 44 3 3 0 1
## Energy Storage 43 1 44 3 3 0 1
## Fridge / Freezer 1 13 31 44 3 3 0 1
## Fridge / Freezer 2 24 20 44 3 3 0 1
## Fridge / Freezer 3 38 6 44 3 3 0 1
## hasApplianceSummary 13 31 44 3 3 0 1
## hasLongSurvey 15 29 44 3 3 0 1
## hasShortSurvey 31 13 44 3 3 0 1
## Heated towel rails 23 21 44 3 3 0 1
## hhID 0 44 44 5 5 0 42
## Hot water cylinder 16 28 44 3 3 0 1
## linkID 0 44 44 5 6 0 44
## Location 0 44 44 10 12 0 2
## Microwave 14 30 44 3 3 0 1
## notes 39 5 44 7 81 0 5
## Other Appliance 30 14 44 3 42 0 8
## Oven 14 30 44 3 3 0 1
## PV Inverter 40 4 44 3 3 0 1
## StartDate 2 42 44 16 16 0 42
## Washing Machine 13 31 44 3 3 0 1
##
## ── Variable type:Date ──────────────────────────────────────────────────────────────────
## variable missing complete n min max median n_unique
## r_stopDate 41 3 44 2015-01-15 2016-04-02 2016-03-28 3
##
## ── Variable type:logical ───────────────────────────────────────────────────────────────
## variable missing complete n mean count
## Other Generation Device 44 0 44 NaN 44
## Q19_10 44 0 44 NaN 44
## Q19_10.1 44 0 44 NaN 44
## Q19_17 44 0 44 NaN 44
## Q19_2 44 0 44 NaN 44
## Q19_5 44 0 44 NaN 44
## Q19_9 44 0 44 NaN 44
##
## ── Variable type:numeric ───────────────────────────────────────────────────────────────
## variable missing complete n mean sd p0 p25 p50
## Heat pump number 19 25 44 1.16 0.55 1 1 1
## nAdults 1 43 44 1.93 0.51 1 2 2
## nChildren0_12 2 42 44 1.02 1.02 0 0 1
## nTeenagers13_18 2 42 44 0.26 0.54 0 0 0
## Q10#1_1_1_TEXT 15 29 44 3.38 0.9 2 3 3
## Q10#1_1_2_TEXT 16 28 44 1.57 1.4 0 0.75 1.5
## Q10#1_2_1_TEXT 15 29 44 1.38 0.49 1 1 1
## Q10#1_2_2_TEXT 16 28 44 1.32 0.67 1 1 1
## Q10#1_3_1_TEXT 15 29 44 1 0 1 1 1
## Q10#1_3_2_TEXT 18 26 44 0.92 0.27 0 1 1
## Q10#1_4_1_TEXT 15 29 44 0.14 0.35 0 0 0
## Q10#1_4_2_TEXT 26 18 44 0.11 0.32 0 0 0
## Q10#1_5_1_TEXT 15 29 44 0.34 0.48 0 0 0
## Q10#1_5_2_TEXT 24 20 44 0 0 0 0 0
## Q10#1_6_1_TEXT 15 29 44 1.62 0.62 1 1 2
## Q10#1_6_2_TEXT 23 21 44 0.43 0.87 0 0 0
## Q10#1_7_1_TEXT 15 29 44 0.69 0.54 0 0 1
## Q10#1_7_2_TEXT 26 18 44 0.056 0.24 0 0 0
## Q10#1_8_1_TEXT 15 29 44 0.83 0.38 0 1 1
## Q10#1_8_2_TEXT 25 19 44 0.053 0.23 0 0 0
## Q11_1 15 29 44 7.76 1.83 4 7 8
## Q14_1 15 29 44 5.28 5.03 0 1 3.5
## Q15_1 15 29 44 14.03 9.76 3 7 10
## Q17_1 28 16 44 20.31 1.58 18 19 20
## Q18_1 15 29 44 20.69 1.58 18 20 20
## Q19_1 28 16 44 1 0 1 1 1
## Q19_12 37 7 44 1 0 1 1 1
## Q19_13 42 2 44 1 0 1 1 1
## Q19_14 43 1 44 1 NA 1 1 1
## Q19_15 42 2 44 1 0 1 1 1
## Q19_16 40 4 44 1 0 1 1 1
## Q19_3 31 13 44 1 0 1 1 1
## Q19_4 37 7 44 1 0 1 1 1
## Q19_6 29 15 44 1 0 1 1 1
## Q19_7 40 4 44 1 0 1 1 1
## Q19_8 43 1 44 1 NA 1 1 1
## Q30_1 36 8 44 19 2.07 16 18 18
## Q33_1 28 16 44 57.06 4.57 50 54 56.5
## Q4 2 42 44 14.45 3.83 1 15 15
## Q40_1 15 29 44 1.31 0.54 1 1 1
## Q40_10 15 29 44 2.55 0.74 1 2 3
## Q40_11 15 29 44 2 0.93 1 1 2
## Q40_12 15 29 44 1.97 1.02 1 1 1
## Q40_13 15 29 44 2.86 0.52 1 3 3
## Q40_14 15 29 44 2.28 0.84 1 2 3
## Q40_15 15 29 44 2.1 0.9 1 1 2
## Q40_16 15 29 44 1 0 1 1 1
## Q40_17 15 29 44 1.76 0.99 1 1 1
## Q40_18 15 29 44 2.24 0.99 1 1 3
## Q40_19 15 29 44 3 0 3 3 3
## Q40_2 15 29 44 2.79 0.62 1 3 3
## Q40_20 15 29 44 2.93 0.37 1 3 3
## Q40_21 15 29 44 1.93 0.96 1 1 2
## Q40_3 15 29 44 1.93 1 1 1 1
## Q40_38 15 29 44 1.24 0.64 1 1 1
## Q40_4 15 29 44 3 0 3 3 3
## Q40_5 15 29 44 2.31 0.85 1 2 3
## Q40_6 15 29 44 1.9 1.01 1 1 1
## Q40_7 15 29 44 2.55 0.83 1 3 3
## Q40_9 15 29 44 2.14 0.95 1 1 3
## Q5 15 29 44 9.66 0.77 8 10 10
## Q53_1 2 42 44 157.24 78.38 50 100.5 140
## Q53_2 25 19 44 31.11 23.06 0 9.5 40
## Q53_3 37 7 44 0 0 0 0 0
## Q53_4 34 10 44 0 0 0 0 0
## Q53_5 28 16 44 224.38 178.13 0 75 226
## Q53_6 36 8 44 16.62 47.02 0 0 0
## Q53_7 36 8 44 0 0 0 0 0
## Q54_1 2 42 44 213.62 100.9 60 146.25 200
## Q54_2 24 20 44 56.55 51.54 0 19.75 50
## Q54_3 37 7 44 0 0 0 0 0
## Q54_4 28 16 44 87.38 115.96 0 18.75 56.5
## Q54_5 29 15 44 241.8 172.44 0 115 252
## Q54_6 35 9 44 15.56 46.67 0 0 0
## Q54_7 37 7 44 0 0 0 0 0
## Q55 2 42 44 12.88 4.55 4 10 12.5
## Q57 2 42 44 3.17 1.34 1 2 3
## Q58#2_1 2 42 44 42.07 9.29 28 34.25 41.5
## Q7 2 42 44 2 1.1 1 1 2
## p75 p100 hist
## 1 3 ▇▁▁▁▁▁▁▁
## 2 3 ▂▁▁▇▁▁▁▁
## 2 3 ▇▁▅▁▁▅▁▂
## 0 2 ▇▁▁▂▁▁▁▁
## 4 6 ▂▇▁▆▁▁▁▁
## 2 6 ▆▆▇▂▁▁▁▁
## 2 2 ▇▁▁▁▁▁▁▅
## 1.25 4 ▇▁▂▁▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▁▁▁▁▇
## 0 1 ▇▁▁▁▁▁▁▁
## 0 1 ▇▁▁▁▁▁▁▁
## 1 1 ▇▁▁▁▁▁▁▅
## 0 0 ▁▁▁▇▁▁▁▁
## 2 3 ▇▁▁▇▁▁▁▁
## 0 3 ▇▁▁▁▁▁▁▁
## 1 2 ▅▁▁▇▁▁▁▁
## 0 1 ▇▁▁▁▁▁▁▁
## 1 1 ▂▁▁▁▁▁▁▇
## 0 1 ▇▁▁▁▁▁▁▁
## 9 10 ▂▁▂▅▁▅▇▃
## 7 20 ▇▆▅▂▁▁▁▁
## 20 44 ▇▇▃▃▁▂▁▁
## 21 24 ▃▆▇▇▁▃▁▂
## 22 23 ▂▂▁▇▃▁▅▅
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 1 1 ▁▁▁▇▁▁▁▁
## 21 22 ▂▁▇▁▁▁▃▂
## 60 65 ▃▂▇▃▂▇▁▃
## 16 17 ▁▁▁▁▁▁▇▆
## 2 3 ▇▁▁▂▁▁▁▁
## 3 3 ▂▁▁▂▁▁▁▇
## 3 3 ▇▁▁▃▁▁▁▇
## 3 3 ▇▁▁▁▁▁▁▇
## 3 3 ▁▁▁▁▁▁▁▇
## 3 3 ▃▁▁▃▁▁▁▇
## 3 3 ▆▁▁▃▁▁▁▇
## 1 1 ▁▁▁▇▁▁▁▁
## 3 3 ▇▁▁▁▁▁▁▅
## 3 3 ▅▁▁▁▁▁▁▇
## 3 3 ▁▁▁▇▁▁▁▁
## 3 3 ▁▁▁▁▁▁▁▇
## 3 3 ▁▁▁▁▁▁▁▇
## 3 3 ▇▁▁▂▁▁▁▇
## 3 3 ▇▁▁▁▁▁▁▇
## 1 3 ▇▁▁▁▁▁▁▁
## 3 3 ▁▁▁▇▁▁▁▁
## 3 3 ▃▁▁▃▁▁▁▇
## 3 3 ▇▁▁▁▁▁▁▆
## 3 3 ▂▁▁▁▁▁▁▇
## 3 3 ▆▁▁▂▁▁▁▇
## 10 10 ▂▁▁▁▁▁▁▇
## 197.5 429 ▆▇▇▃▂▁▁▁
## 50 60 ▇▁▅▂▁▃▇▅
## 0 0 ▁▁▁▇▁▁▁▁
## 0 0 ▁▁▁▇▁▁▁▁
## 352.5 500 ▇▃▂▂▆▂▁▇
## 0 133 ▇▁▁▁▁▁▁▁
## 0 0 ▁▁▁▇▁▁▁▁
## 258.75 485 ▃▇▇▆▃▂▁▂
## 80.75 180 ▇▂▇▃▂▁▁▂
## 0 0 ▁▁▁▇▁▁▁▁
## 100.75 451 ▇▆▁▁▁▁▁▁
## 385 500 ▆▃▂▂▆▂▁▇
## 0 140 ▇▁▁▁▁▁▁▁
## 0 0 ▁▁▁▇▁▁▁▁
## 16 26 ▂▃▇▅▃▅▁▁
## 4 6 ▃▇▁▇▇▁▃▂
## 49 64 ▆▇▃▅▇▂▁▂
## 3 4 ▇▁▅▁▁▃▁▂
##
## ── Variable type:POSIXct ───────────────────────────────────────────────────────────────
## variable missing complete n min max median
## surveyStartDate 2 42 44 2014-05-14 2015-02-10 2014-06-19
## n_unique
## 42
Analysis completed in 96.13 seconds ( 1.6 minutes) using knitr in RStudio with R version 3.5.2 (2018-12-20) running on x86_64-apple-darwin15.6.0.
## R version 3.5.2 (2018-12-20)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_NZ.UTF-8/en_NZ.UTF-8/en_NZ.UTF-8/C/en_NZ.UTF-8/en_NZ.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] viridis_0.5.1 viridisLite_0.3.0 skimr_1.0.5
## [4] dplyr_0.8.0.1 tidyselect_0.2.5 drake_7.2.0
## [7] stringr_1.4.0 shiny_1.3.2 kableExtra_1.1.0
## [10] lubridate_1.7.4 readr_1.3.1 ggplot2_3.1.1
## [13] data.table_1.12.2 bookdown_0.10 rmarkdown_1.13
## [16] here_0.1 GREENGridData_1.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 tidyr_0.8.3 prettyunits_1.0.2
## [4] visNetwork_2.0.6 assertthat_0.2.1 zeallot_0.1.0
## [7] rprojroot_1.3-2 digest_0.6.19 packrat_0.5.0
## [10] utf8_1.1.4 mime_0.6 R6_2.4.0
## [13] cellranger_1.1.0 plyr_1.8.4 backports_1.1.4
## [16] evaluate_0.13 httr_1.4.0 highr_0.8
## [19] pillar_1.4.0 rlang_0.3.4 progress_1.2.1
## [22] lazyeval_0.2.2 readxl_1.3.1 rstudioapi_0.10
## [25] labeling_0.3 webshot_0.5.1 htmlwidgets_1.3
## [28] igraph_1.2.4.1 munsell_0.5.0 compiler_3.5.2
## [31] httpuv_1.5.1 xfun_0.7 pkgconfig_2.0.2
## [34] htmltools_0.3.6 gridExtra_2.3 tibble_2.1.1
## [37] fansi_0.4.0 crayon_1.3.4 withr_2.1.2
## [40] later_0.8.0 grid_3.5.2 jsonlite_1.6
## [43] xtable_1.8-4 gtable_0.3.0 magrittr_1.5
## [46] storr_1.2.1 scales_1.0.0 cli_1.1.0
## [49] stringi_1.4.3 reshape2_1.4.3 promises_1.0.1
## [52] xml2_1.2.0 vctrs_0.1.0 tools_3.5.2
## [55] glue_1.3.1 purrr_0.3.2 hms_0.4.2
## [58] yaml_2.2.0 colorspace_1.4-1 base64url_1.4
## [61] rvest_0.3.3 knitr_1.23
Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, and Winston Chang. 2018. Rmarkdown: Dynamic Documents for R. https://CRAN.R-project.org/package=rmarkdown.
Anderson, Ben, and David Eyers. 2018. GREENGridData: Processing Nz Green Grid Project Data to Create a ’Safe’ Version for Data Archiving and Re-Use. https://github.com/CfSOtago/GREENGridData.
Csárdi, Gábor, and Rich FitzJohn. 2016. Progress: Terminal Progress Bars. https://CRAN.R-project.org/package=progress.
Dowle, M, A Srinivasan, T Short, S Lianoglou with contributions from R Saporta, and E Antonyan. 2015. Data.table: Extension of Data.frame. https://CRAN.R-project.org/package=data.table.
Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with lubridate.” Journal of Statistical Software 40 (3): 1–25. http://www.jstatsoft.org/v40/i03/.
Müller, Kirill. 2017. Here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here.
———. 2018. Hms: Pretty Time of Day. https://CRAN.R-project.org/package=hms.
R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Stephenson, Janet, Rebecca Ford, Nirmal-Kumar Nair, Neville Watson, Alan Wood, and Allan Miller. 2017. “Smart Grid Research in New Zealand–A Review from the GREEN Grid Research Programme.” Renewable and Sustainable Energy Reviews 82 (1): 1636–45. https://doi.org/10.1016/j.rser.2017.07.010.
Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/.
———. 2009. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org.
Wickham, Hadley, and Jennifer Bryan. 2017. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.
Wickham, Hadley, and Romain Francois. 2016. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Wickham, Hadley, Jim Hester, and Romain Francois. 2016. Readr: Read Tabular Data. https://CRAN.R-project.org/package=readr.
Xie, Yihui. 2016a. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.
———. 2016b. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-project.org/package=knitr.
Zhu, Hao. 2018. KableExtra: Construct Complex Table with ’Kable’ and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.