1 About

1.1 Report circulation:

  • Public - this report is intended to accompany the data release.

1.2 License

This work is made available under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.

This means you are free to:

  • Share — copy and redistribute the material in any medium or format
  • Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

  • Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
  • No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

  • You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
  • No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. #YMMV

For the avoidance of doubt and explanation of terms please refer to the full license notice and legal code.

1.3 Citation

If you wish to use any of the material from this report please cite as:

  • Anderson, B. (2019) GREENGrid Household Electricity Demand Data TestImputed total power demand using: circuitsToSum_v1.0. Centre for Sustainability, University of Otago: Dunedin.

This work is (c) 2019 the University of Otago

1.4 History

1.5 Requirements:

This report uses the safe version of the grid spy 1 minute data which has been processed using the code in https://github.com/CfSOtago/GREENGridData/tree/master/dataProcessing/gridSpy.

1.6 Support

This work was supported by:

2 Introduction

The NZ GREEN Grid household electricity demand study recruited a sample of c 25 households in each of two regions of New Zealand (Stephenson et al. 2017). The first sample was recruited in early 2014 and the second in early 2015. Research data includes:

  • 1 minute electricity power (W) data was collected for each dwelling circuit using GridSpy monitors on each power circuit (and the incoming power). The power values represent mean(W) over the minute preceeding the observation timestamp;
  • Dwelling & appliance surveys;
  • Occupant time-use diaries (focused on energy use).

NB: Version 1 of the data package does not include the time-use diaries.

This report provides summary analysis of the imputed total demand for each household. The imputation was done using:

  • circuitsToSum_v1.0

3 Load data

Table 3.1: First few rows of grid spy data
linkID dateTime_utc imputedTotalW
rf_06 2015-03-31 11:00:00 439.38
rf_06 2015-03-31 11:01:00 436.53
rf_06 2015-03-31 11:02:00 417.97
rf_06 2015-03-31 11:03:00 317.46
rf_06 2015-03-31 11:04:00 316.98
rf_06 2015-03-31 11:05:00 316.98

Table 3.1 shows the first few rows of the Grid Spy 1 minute power data. Table 3.2 shows a summary of the Grid Spy 1 minute power data (for more detail see Section 7.1).

Table 3.2: Summary of grid spy data
linkID dateTime_utc imputedTotalW dateTime_nz obsTimeHMS
Length:15163214 Min. :2015-03-31 11:00:00 Min. :-1084.7 Min. :2015-04-01 00:00:00 Length:15163214
Class :character 1st Qu.:2015-06-23 20:38:00 1st Qu.: 211.2 1st Qu.:2015-06-24 08:38:00 Class1:hms
Mode :character Median :2015-09-17 15:41:30 Median : 425.9 Median :2015-09-18 03:41:30 Class2:difftime
NA Mean :2015-09-22 04:22:52 Mean : 942.3 Mean :2015-09-22 16:22:52 Mode :numeric
NA 3rd Qu.:2015-12-19 12:37:00 3rd Qu.: 1172.6 3rd Qu.:2015-12-20 01:37:00 NA
NA Max. :2016-03-31 10:59:00 Max. :13999.8 Max. :2016-03-31 23:59:00 NA

Note that:

  • dateTime_utc is the correct dateTime of each observation in UTC. You may get strange results until you use lubridate to tell R to use tz = “Pacific/Auckland” with this variable;
  • there can be 0 or negative Wh observations.

Table 3.3 shows the summaries for each household as imputed using circuitsToSum_v1.0. Note that the presence of a PV inverter may only be known from the appliance summary and/or the household data.

The number of households excluded will depend on the circuits file used:

  • v1.0:
    • no PV
    • no -ve values (?)
  • v1.1:
    • no exclusions
## Warning: `as_tibble.matrix()` requires a matrix with column names or a `.name_repair` argument. Using compatibility `.name_repair`.
## This warning is displayed once per session.
Table 3.3: Summary of monitored households (NA indicates data not included in circuitsToSum_v1.0)
linkID hasHhData hasApplianceSummary pvInverter energyStorage notes nObs minW maxW Circuit 1 Circuit 2 Circuit 3
rf_06 Yes No Not known Not known 523193 103.00 9975.92 Hot Water - Controlled$2248 Incomer - Uncontrolled$2249
rf_07 Yes No Not known Not known 508692 16.00 9508.46 Incomer 1 - Uncontrolled$2726 Incomer 2 - Uncontrolled$2725
rf_08 Yes No Not known Not known 521723 133.89 11556.80 Incomer - Uncontrolled$2093 Hot Water - Controlled$2094
rf_09 Yes No Not known Not known 153389 -16.00 8586.00 Incomer 1 - Uncont - Inc Hob$2729 Incomer 2 - Uncont - Inc Oven$2730
rf_10 Yes Yes No No 526678 27.68 9160.32 Incomer - All$2599
rf_11 Yes Yes No No 519067 15.00 10955.77 Incomer - Uncontrolled$2585 Hot Water Cpbd Heater- Cont$2586 Spa - Uncontrolled$2587
rf_12 Yes No Not known Not known 80801 -406.00 8779.69 Incomer 1 - Hot Water - Cont$2626 Incomer 2 - Uncontrolled$2625 Incomer 3 - Uncontrolled$2627
rf_13 Yes Yes No No 526809 163.04 11580.60 Incomer - Uncontrolled$2209
rf_14 Yes Yes No No NA NA NA NA NA NA
rf_15a Yes No Not known Not known Disconnected 15/01/2015. Re-used NA NA NA NA NA NA
rf_15b Yes No Not known Not known Re-user. Then disconnected 02/04/2016 NA NA NA NA NA NA
rf_16 Yes No Not known Not known NA NA NA Incomer 1 - Uncont inc Oven$2681 Incomer 2 - Uncont inc Stove$2680 Hot Water - Controlled$2679
rf_17a Yes No Not known Not known Unusual & specialist energy tech configuration. Disconnected 28/03/2016. Re-used. 520688 -1084.72 9041.53 Incomer 1 - Uncont - inc Hob$2152 Incomer 2 - Uncont - inc Oven$2151 Hot Water - Controlled$2150
rf_17b Yes No Not known Not known Re-user NA NA NA NA NA NA
rf_18 Yes No Not known Not known NA NA NA NA NA NA
rf_19 Yes Yes yes No NA NA NA NA NA NA
rf_20 Yes No Not known Not known NA NA NA NA NA NA
rf_21 Yes Yes No No 504923 31.00 6835.12 Incomer - All$2748
rf_22 Yes Yes No No 525979 50.25 11535.40 Incomer - Uncontrolled$2237 Hot Water - Controlled$2236
rf_23 Yes Yes yes yes NA NA NA NA NA NA
rf_24 Yes Yes yes No NA NA NA NA NA NA
rf_25 Yes Yes No No 443096 0.00 10163.25 Incomer 1 - Uncontrolled $2763 Incomer 2 - Uncontrolled $2762
rf_26 Yes Yes No No 522486 -421.25 8814.36 Incomer 1 - All$2703 Incomer 2 - All$2704
rf_27 Yes Yes No No 497686 58.00 9569.40 Incomer - Uncontrolled$2824 Hot Water - Controlled$2825
rf_28 Yes Yes yes No NA NA NA NA NA NA
rf_29 Yes Yes No No 526661 115.89 11053.34 Incomer - Uncontrolled$4181 Hot Water - Controlled$4184
rf_30 Yes Yes No No 477371 30.00 8706.07 Incomer - All$4239
rf_31 Yes Yes No No 526761 24.00 9429.64 Incomer - All$4199
rf_32 Yes Yes No No 526665 0.00 8274.91 Incomer - All$4193
rf_33 Yes Yes No No 526743 69.20 9654.25 Incomer - Uncontrolled$4143 Hot Water - Controlled$4144
rf_34 Yes Yes No No 526557 74.00 13043.50 Incomer - All$4225
rf_35 Yes Yes No No 328634 -622.00 10373.54 Incomer - Uncontrolled$4126 Hot Water - Uncontrolled$4125
rf_36 Yes Yes No No 516127 0.00 11493.20 Incomer - All$4148
rf_37 Yes Yes No No 526651 51.00 9365.54 Incomer -Uncontrolled$4136 Hot Water - Controlled$4135
rf_38 Yes Yes No No very large number of circuits 374442 -179.00 9073.99 Incomer - Uncontrolled$4177 Hot Water - Controlled$4178
rf_39 Yes Yes No No 495686 -199.00 13999.81 Incomer - Uncontrolled$4248 Hot Water (2 elements)$4247
rf_40 Yes Yes No No 338949 24.00 12527.77 Incomer - Uncontrolled$4168 Hot Water - Controlled$4167
rf_41 Yes Yes No No 224546 56.00 10004.40 Incomer - All$4192
rf_42 Yes Yes No No 518065 35.08 11786.40 Incomer - All$4132
rf_43 Yes No Not known Not known 289563 0.00 6687.53 Incomer - All$4213
rf_44 Yes Yes No No 526738 32.00 12165.12 Incomer - Uncontrolled$4156 Hot Water - Controlled$4155
rf_45 Yes Yes No No 525994 23.90 10385.13 Incomer - Uncontrolled$4157 Hot Water - Controlled$4158
rf_46 Yes Yes No No 486863 92.00 10305.78 Incomer - Uncontrolled$4230 Hot Water - Controlled$4231
rf_47 Yes Yes No No 524988 21.00 11171.30 Incomer - All$4170

4 Test 0 and -ve power value incidence

Figure 4.1 shows the incidence of -ve overall imputed power values by linkID (household) and date. As we can see they tend to be concentrated in a few households.

## Warning: Removed 33 rows containing missing values (geom_tile).
Incidence of -ve values by household ID, date and presence of PV (if known)

Figure 4.1: Incidence of -ve values by household ID, date and presence of PV (if known)

Table 4.1: Number of observations of 0 or -ve total W by presence of PV
pvInverter nObs nHouseholds
No 12284 27
Not known 15763 13
yes 0 4

Table 4.1 (-ve and 0 observations by PV inverter presence) shows whether or not this is likely to be a PV related problem in the dataset defined by . This is confirmed by Table @(tab:testPV) which shows the summary data from Table 4.1 but for just those we know to have PV inverters. If this version of the circuits file has excluded them then the power data will be all NA.

Table 4.2: Summary of monitored households (NA indicates data not included in circuitsToSum_v1.0)
linkID pvInverter energyStorage notes nObs minW maxW Circuit 1 Circuit 2 Circuit 3
rf_19 yes No NA NA NA NA NA NA
rf_23 yes yes NA NA NA NA NA NA
rf_24 yes No NA NA NA NA NA NA
rf_28 yes No NA NA NA NA NA NA

Figure 4.2 shows the mean overall imputed power values by linkID (household) and date where power <= 0. As we can see they tend to be concentrated in a few households with some reporting persistent -ve values even though they do not appear to have PV.

## Warning: Removed 33 rows containing missing values (geom_tile).
Mean of -ve values by household ID and date and presence of PV (if known)

Figure 4.2: Mean of -ve values by household ID and date and presence of PV (if known)

5 Test power profiles

Next we test the power profiles by season to see if there is a seasonal pattern to the negatuive values which might indicate unreported PV (for example).

First we create a Southern Hemisphere season variable. We have a function to do this in the GREENGridData package. We print a check table to ensure we are all happy with the coding of season.

powerDT <- powerDT[, r_dateTime := dateTime_utc] # for consistency
powerDT <- GREENGridData::addNZSeason(powerDT)
table(lubridate::month(powerDT$r_dateTime, label = TRUE), powerDT$season, useNA = "always")
##       
##         Spring  Summer  Autumn  Winter    <NA>
##   Jan        0 1141576       0       0       0
##   Feb        0 1075452       0       0       0
##   Mar        0       0 1135877       0       0
##   Apr        0       0 1342246       0       0
##   May        0       0 1372070       0       0
##   Jun        0       0       0 1380257       0
##   Jul        0       0       0 1393148       0
##   Aug        0       0       0 1335760       0
##   Sep  1310703       0       0       0       0
##   Oct  1329129       0       0       0       0
##   Nov  1186189       0       0       0       0
##   Dec        0 1160807       0       0       0
##   <NA>       0       0       0       0       0

Figure 5.1 plots overall mean power per minute by season and household id.

Mean total demand profile plot

Figure 5.1: Mean total demand profile plot

If a household has PV this should be clearly visible as a -ve curve centered on ~ 12:00 - 13:00.

Minimum total demand profile plot

Figure 5.2: Minimum total demand profile plot

Figure 5.2 repeats this analysis but for minimum power per minute by season and household id and plots only those values that are <= 0 to clarify time of day effects on -ve values.

6 Implications

When using the ‘total demand’ derived data we suggest data users:

  • v1.0:
    • excluding household (link) IDs: 25,26,43;
    • excluding other -ve values on a per-value basis;
  • v1.1:
    • excluding household (link) IDs: 14,25,26,43;
    • excluding other -ve values on a per-value basis;
    • only including households known to have PV if analysis of demand during non-daylight hours is being undertaken (c.f. Figures ?? and 5.2).

In all cases we recommend that users check the data carefully before anlaysis and document anY filtering they apply!

7 Statistical Annex

7.1 Power data

## Skim summary statistics
##  n obs: 15163214 
##  n variables: 8 
## 
## ── Variable type:character ─────────────────────────────────────────────────────────────
##  variable missing complete        n min max empty n_unique
##    linkID       0 15163214 15163214   5   6     0       33
## 
## ── Variable type:difftime ──────────────────────────────────────────────────────────────
##         variable missing complete        n    min        max     median
##       obsTimeHMS       0 15163214 15163214 0 secs 86340 secs 43140 secs
##  obsTimeHMSQHour       0 15163214 15163214 0 secs 85500 secs 42300 secs
##  n_unique
##      1440
##        96
## 
## ── Variable type:factor ────────────────────────────────────────────────────────────────
##  variable missing complete        n n_unique
##    season       0 15163214 15163214        4
##                                              top_counts ordered
##  Win: 4109165, Aut: 3850193, Spr: 3826021, Sum: 3377835   FALSE
## 
## ── Variable type:numeric ───────────────────────────────────────────────────────────────
##       variable missing complete        n  mean      sd       p0    p25
##  imputedTotalW       0 15163214 15163214 942.3 1182.83 -1084.72 211.25
##     p50     p75     p100     hist
##  425.93 1172.62 13999.81 ▇▂▁▁▁▁▁▁
## 
## ── Variable type:POSIXct ───────────────────────────────────────────────────────────────
##      variable missing complete        n        min        max     median
##   dateTime_nz       0 15163214 15163214 2015-04-01 2016-03-31 2015-09-18
##  dateTime_utc       0 15163214 15163214 2015-03-31 2016-03-31 2015-09-17
##    r_dateTime       0 15163214 15163214 2015-03-31 2016-03-31 2015-09-17
##  n_unique
##    526980
##    526980
##    526980

7.2 Household data

## Skim summary statistics
##  n obs: 44 
##  n variables: 110 
## 
## ── Variable type:character ─────────────────────────────────────────────────────────────
##             variable missing complete  n min max empty n_unique
##        Clothes Dryer      23       21 44   3   3     0        1
##           Dishwasher      15       29 44   3   3     0        1
##      Electric heater      30       14 44   3   3     0        1
##       Energy Storage      43        1 44   3   3     0        1
##   Fridge / Freezer 1      13       31 44   3   3     0        1
##   Fridge / Freezer 2      24       20 44   3   3     0        1
##   Fridge / Freezer 3      38        6 44   3   3     0        1
##  hasApplianceSummary      13       31 44   3   3     0        1
##        hasLongSurvey      15       29 44   3   3     0        1
##       hasShortSurvey      31       13 44   3   3     0        1
##   Heated towel rails      23       21 44   3   3     0        1
##                 hhID       0       44 44   5   5     0       42
##   Hot water cylinder      16       28 44   3   3     0        1
##               linkID       0       44 44   5   6     0       44
##             Location       0       44 44  10  12     0        2
##            Microwave      14       30 44   3   3     0        1
##                notes      39        5 44   7  81     0        5
##      Other Appliance      30       14 44   3  42     0        8
##                 Oven      14       30 44   3   3     0        1
##          PV Inverter      40        4 44   3   3     0        1
##            StartDate       2       42 44  16  16     0       42
##      Washing Machine      13       31 44   3   3     0        1
## 
## ── Variable type:Date ──────────────────────────────────────────────────────────────────
##    variable missing complete  n        min        max     median n_unique
##  r_stopDate      41        3 44 2015-01-15 2016-04-02 2016-03-28        3
## 
## ── Variable type:logical ───────────────────────────────────────────────────────────────
##                 variable missing complete  n mean count
##  Other Generation Device      44        0 44  NaN    44
##                   Q19_10      44        0 44  NaN    44
##                 Q19_10.1      44        0 44  NaN    44
##                   Q19_17      44        0 44  NaN    44
##                    Q19_2      44        0 44  NaN    44
##                    Q19_5      44        0 44  NaN    44
##                    Q19_9      44        0 44  NaN    44
## 
## ── Variable type:numeric ───────────────────────────────────────────────────────────────
##          variable missing complete  n    mean     sd p0    p25   p50
##  Heat pump number      19       25 44   1.16    0.55  1   1      1  
##           nAdults       1       43 44   1.93    0.51  1   2      2  
##     nChildren0_12       2       42 44   1.02    1.02  0   0      1  
##   nTeenagers13_18       2       42 44   0.26    0.54  0   0      0  
##    Q10#1_1_1_TEXT      15       29 44   3.38    0.9   2   3      3  
##    Q10#1_1_2_TEXT      16       28 44   1.57    1.4   0   0.75   1.5
##    Q10#1_2_1_TEXT      15       29 44   1.38    0.49  1   1      1  
##    Q10#1_2_2_TEXT      16       28 44   1.32    0.67  1   1      1  
##    Q10#1_3_1_TEXT      15       29 44   1       0     1   1      1  
##    Q10#1_3_2_TEXT      18       26 44   0.92    0.27  0   1      1  
##    Q10#1_4_1_TEXT      15       29 44   0.14    0.35  0   0      0  
##    Q10#1_4_2_TEXT      26       18 44   0.11    0.32  0   0      0  
##    Q10#1_5_1_TEXT      15       29 44   0.34    0.48  0   0      0  
##    Q10#1_5_2_TEXT      24       20 44   0       0     0   0      0  
##    Q10#1_6_1_TEXT      15       29 44   1.62    0.62  1   1      2  
##    Q10#1_6_2_TEXT      23       21 44   0.43    0.87  0   0      0  
##    Q10#1_7_1_TEXT      15       29 44   0.69    0.54  0   0      1  
##    Q10#1_7_2_TEXT      26       18 44   0.056   0.24  0   0      0  
##    Q10#1_8_1_TEXT      15       29 44   0.83    0.38  0   1      1  
##    Q10#1_8_2_TEXT      25       19 44   0.053   0.23  0   0      0  
##             Q11_1      15       29 44   7.76    1.83  4   7      8  
##             Q14_1      15       29 44   5.28    5.03  0   1      3.5
##             Q15_1      15       29 44  14.03    9.76  3   7     10  
##             Q17_1      28       16 44  20.31    1.58 18  19     20  
##             Q18_1      15       29 44  20.69    1.58 18  20     20  
##             Q19_1      28       16 44   1       0     1   1      1  
##            Q19_12      37        7 44   1       0     1   1      1  
##            Q19_13      42        2 44   1       0     1   1      1  
##            Q19_14      43        1 44   1      NA     1   1      1  
##            Q19_15      42        2 44   1       0     1   1      1  
##            Q19_16      40        4 44   1       0     1   1      1  
##             Q19_3      31       13 44   1       0     1   1      1  
##             Q19_4      37        7 44   1       0     1   1      1  
##             Q19_6      29       15 44   1       0     1   1      1  
##             Q19_7      40        4 44   1       0     1   1      1  
##             Q19_8      43        1 44   1      NA     1   1      1  
##             Q30_1      36        8 44  19       2.07 16  18     18  
##             Q33_1      28       16 44  57.06    4.57 50  54     56.5
##                Q4       2       42 44  14.45    3.83  1  15     15  
##             Q40_1      15       29 44   1.31    0.54  1   1      1  
##            Q40_10      15       29 44   2.55    0.74  1   2      3  
##            Q40_11      15       29 44   2       0.93  1   1      2  
##            Q40_12      15       29 44   1.97    1.02  1   1      1  
##            Q40_13      15       29 44   2.86    0.52  1   3      3  
##            Q40_14      15       29 44   2.28    0.84  1   2      3  
##            Q40_15      15       29 44   2.1     0.9   1   1      2  
##            Q40_16      15       29 44   1       0     1   1      1  
##            Q40_17      15       29 44   1.76    0.99  1   1      1  
##            Q40_18      15       29 44   2.24    0.99  1   1      3  
##            Q40_19      15       29 44   3       0     3   3      3  
##             Q40_2      15       29 44   2.79    0.62  1   3      3  
##            Q40_20      15       29 44   2.93    0.37  1   3      3  
##            Q40_21      15       29 44   1.93    0.96  1   1      2  
##             Q40_3      15       29 44   1.93    1     1   1      1  
##            Q40_38      15       29 44   1.24    0.64  1   1      1  
##             Q40_4      15       29 44   3       0     3   3      3  
##             Q40_5      15       29 44   2.31    0.85  1   2      3  
##             Q40_6      15       29 44   1.9     1.01  1   1      1  
##             Q40_7      15       29 44   2.55    0.83  1   3      3  
##             Q40_9      15       29 44   2.14    0.95  1   1      3  
##                Q5      15       29 44   9.66    0.77  8  10     10  
##             Q53_1       2       42 44 157.24   78.38 50 100.5  140  
##             Q53_2      25       19 44  31.11   23.06  0   9.5   40  
##             Q53_3      37        7 44   0       0     0   0      0  
##             Q53_4      34       10 44   0       0     0   0      0  
##             Q53_5      28       16 44 224.38  178.13  0  75    226  
##             Q53_6      36        8 44  16.62   47.02  0   0      0  
##             Q53_7      36        8 44   0       0     0   0      0  
##             Q54_1       2       42 44 213.62  100.9  60 146.25 200  
##             Q54_2      24       20 44  56.55   51.54  0  19.75  50  
##             Q54_3      37        7 44   0       0     0   0      0  
##             Q54_4      28       16 44  87.38  115.96  0  18.75  56.5
##             Q54_5      29       15 44 241.8   172.44  0 115    252  
##             Q54_6      35        9 44  15.56   46.67  0   0      0  
##             Q54_7      37        7 44   0       0     0   0      0  
##               Q55       2       42 44  12.88    4.55  4  10     12.5
##               Q57       2       42 44   3.17    1.34  1   2      3  
##           Q58#2_1       2       42 44  42.07    9.29 28  34.25  41.5
##                Q7       2       42 44   2       1.1   1   1      2  
##     p75 p100     hist
##    1       3 ▇▁▁▁▁▁▁▁
##    2       3 ▂▁▁▇▁▁▁▁
##    2       3 ▇▁▅▁▁▅▁▂
##    0       2 ▇▁▁▂▁▁▁▁
##    4       6 ▂▇▁▆▁▁▁▁
##    2       6 ▆▆▇▂▁▁▁▁
##    2       2 ▇▁▁▁▁▁▁▅
##    1.25    4 ▇▁▂▁▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▁▁▁▁▇
##    0       1 ▇▁▁▁▁▁▁▁
##    0       1 ▇▁▁▁▁▁▁▁
##    1       1 ▇▁▁▁▁▁▁▅
##    0       0 ▁▁▁▇▁▁▁▁
##    2       3 ▇▁▁▇▁▁▁▁
##    0       3 ▇▁▁▁▁▁▁▁
##    1       2 ▅▁▁▇▁▁▁▁
##    0       1 ▇▁▁▁▁▁▁▁
##    1       1 ▂▁▁▁▁▁▁▇
##    0       1 ▇▁▁▁▁▁▁▁
##    9      10 ▂▁▂▅▁▅▇▃
##    7      20 ▇▆▅▂▁▁▁▁
##   20      44 ▇▇▃▃▁▂▁▁
##   21      24 ▃▆▇▇▁▃▁▂
##   22      23 ▂▂▁▇▃▁▅▅
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##    1       1 ▁▁▁▇▁▁▁▁
##   21      22 ▂▁▇▁▁▁▃▂
##   60      65 ▃▂▇▃▂▇▁▃
##   16      17 ▁▁▁▁▁▁▇▆
##    2       3 ▇▁▁▂▁▁▁▁
##    3       3 ▂▁▁▂▁▁▁▇
##    3       3 ▇▁▁▃▁▁▁▇
##    3       3 ▇▁▁▁▁▁▁▇
##    3       3 ▁▁▁▁▁▁▁▇
##    3       3 ▃▁▁▃▁▁▁▇
##    3       3 ▆▁▁▃▁▁▁▇
##    1       1 ▁▁▁▇▁▁▁▁
##    3       3 ▇▁▁▁▁▁▁▅
##    3       3 ▅▁▁▁▁▁▁▇
##    3       3 ▁▁▁▇▁▁▁▁
##    3       3 ▁▁▁▁▁▁▁▇
##    3       3 ▁▁▁▁▁▁▁▇
##    3       3 ▇▁▁▂▁▁▁▇
##    3       3 ▇▁▁▁▁▁▁▇
##    1       3 ▇▁▁▁▁▁▁▁
##    3       3 ▁▁▁▇▁▁▁▁
##    3       3 ▃▁▁▃▁▁▁▇
##    3       3 ▇▁▁▁▁▁▁▆
##    3       3 ▂▁▁▁▁▁▁▇
##    3       3 ▆▁▁▂▁▁▁▇
##   10      10 ▂▁▁▁▁▁▁▇
##  197.5   429 ▆▇▇▃▂▁▁▁
##   50      60 ▇▁▅▂▁▃▇▅
##    0       0 ▁▁▁▇▁▁▁▁
##    0       0 ▁▁▁▇▁▁▁▁
##  352.5   500 ▇▃▂▂▆▂▁▇
##    0     133 ▇▁▁▁▁▁▁▁
##    0       0 ▁▁▁▇▁▁▁▁
##  258.75  485 ▃▇▇▆▃▂▁▂
##   80.75  180 ▇▂▇▃▂▁▁▂
##    0       0 ▁▁▁▇▁▁▁▁
##  100.75  451 ▇▆▁▁▁▁▁▁
##  385     500 ▆▃▂▂▆▂▁▇
##    0     140 ▇▁▁▁▁▁▁▁
##    0       0 ▁▁▁▇▁▁▁▁
##   16      26 ▂▃▇▅▃▅▁▁
##    4       6 ▃▇▁▇▇▁▃▂
##   49      64 ▆▇▃▅▇▂▁▂
##    3       4 ▇▁▅▁▁▃▁▂
## 
## ── Variable type:POSIXct ───────────────────────────────────────────────────────────────
##         variable missing complete  n        min        max     median
##  surveyStartDate       2       42 44 2014-05-14 2015-02-10 2014-06-19
##  n_unique
##        42

8 Runtime

Analysis completed in 96.13 seconds ( 1.6 minutes) using knitr in RStudio with R version 3.5.2 (2018-12-20) running on x86_64-apple-darwin15.6.0.

9 R environment

9.1 R packages used

  • base R (R Core Team 2016)
  • bookdown (Xie 2016a)
  • ggplot2 (Wickham 2009)
  • here (Müller 2017)
  • GREENGridData (Anderson and Eyers 2018) which depends on:
    • data.table (Dowle et al. 2015)
    • dplyr (Wickham and Francois 2016)
    • hms (Müller 2018)
    • lubridate (Grolemund and Wickham 2011)
    • progress (Csárdi and FitzJohn 2016)
    • readr (Wickham, Hester, and Francois 2016)
    • readxl (Wickham and Bryan 2017)
    • reshape2 (Wickham 2007)
  • kableExtra (Zhu 2018)
  • knitr (Xie 2016b)
  • rmarkdown (Allaire et al. 2018)

9.2 Session info

## R version 3.5.2 (2018-12-20)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
## 
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_NZ.UTF-8/en_NZ.UTF-8/en_NZ.UTF-8/C/en_NZ.UTF-8/en_NZ.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] viridis_0.5.1     viridisLite_0.3.0 skimr_1.0.5      
##  [4] dplyr_0.8.0.1     tidyselect_0.2.5  drake_7.2.0      
##  [7] stringr_1.4.0     shiny_1.3.2       kableExtra_1.1.0 
## [10] lubridate_1.7.4   readr_1.3.1       ggplot2_3.1.1    
## [13] data.table_1.12.2 bookdown_0.10     rmarkdown_1.13   
## [16] here_0.1          GREENGridData_1.0
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.1        tidyr_0.8.3       prettyunits_1.0.2
##  [4] visNetwork_2.0.6  assertthat_0.2.1  zeallot_0.1.0    
##  [7] rprojroot_1.3-2   digest_0.6.19     packrat_0.5.0    
## [10] utf8_1.1.4        mime_0.6          R6_2.4.0         
## [13] cellranger_1.1.0  plyr_1.8.4        backports_1.1.4  
## [16] evaluate_0.13     httr_1.4.0        highr_0.8        
## [19] pillar_1.4.0      rlang_0.3.4       progress_1.2.1   
## [22] lazyeval_0.2.2    readxl_1.3.1      rstudioapi_0.10  
## [25] labeling_0.3      webshot_0.5.1     htmlwidgets_1.3  
## [28] igraph_1.2.4.1    munsell_0.5.0     compiler_3.5.2   
## [31] httpuv_1.5.1      xfun_0.7          pkgconfig_2.0.2  
## [34] htmltools_0.3.6   gridExtra_2.3     tibble_2.1.1     
## [37] fansi_0.4.0       crayon_1.3.4      withr_2.1.2      
## [40] later_0.8.0       grid_3.5.2        jsonlite_1.6     
## [43] xtable_1.8-4      gtable_0.3.0      magrittr_1.5     
## [46] storr_1.2.1       scales_1.0.0      cli_1.1.0        
## [49] stringi_1.4.3     reshape2_1.4.3    promises_1.0.1   
## [52] xml2_1.2.0        vctrs_0.1.0       tools_3.5.2      
## [55] glue_1.3.1        purrr_0.3.2       hms_0.4.2        
## [58] yaml_2.2.0        colorspace_1.4-1  base64url_1.4    
## [61] rvest_0.3.3       knitr_1.23

References

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, and Winston Chang. 2018. Rmarkdown: Dynamic Documents for R. https://CRAN.R-project.org/package=rmarkdown.

Anderson, Ben, and David Eyers. 2018. GREENGridData: Processing Nz Green Grid Project Data to Create a ’Safe’ Version for Data Archiving and Re-Use. https://github.com/CfSOtago/GREENGridData.

Csárdi, Gábor, and Rich FitzJohn. 2016. Progress: Terminal Progress Bars. https://CRAN.R-project.org/package=progress.

Dowle, M, A Srinivasan, T Short, S Lianoglou with contributions from R Saporta, and E Antonyan. 2015. Data.table: Extension of Data.frame. https://CRAN.R-project.org/package=data.table.

Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with lubridate.” Journal of Statistical Software 40 (3): 1–25. http://www.jstatsoft.org/v40/i03/.

Müller, Kirill. 2017. Here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here.

———. 2018. Hms: Pretty Time of Day. https://CRAN.R-project.org/package=hms.

R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Stephenson, Janet, Rebecca Ford, Nirmal-Kumar Nair, Neville Watson, Alan Wood, and Allan Miller. 2017. “Smart Grid Research in New Zealand–A Review from the GREEN Grid Research Programme.” Renewable and Sustainable Energy Reviews 82 (1): 1636–45. https://doi.org/10.1016/j.rser.2017.07.010.

Wickham, Hadley. 2007. “Reshaping Data with the reshape Package.” Journal of Statistical Software 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/.

———. 2009. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org.

Wickham, Hadley, and Jennifer Bryan. 2017. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.

Wickham, Hadley, and Romain Francois. 2016. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, Jim Hester, and Romain Francois. 2016. Readr: Read Tabular Data. https://CRAN.R-project.org/package=readr.

Xie, Yihui. 2016a. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.

———. 2016b. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-project.org/package=knitr.

Zhu, Hao. 2018. KableExtra: Construct Complex Table with ’Kable’ and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.